63 research outputs found

    Learning a Swarm Foraging Behavior with Microscopic Fuzzy Controllers Using Deep Reinforcement Learning

    Get PDF
    This article presents a macroscopic swarm foraging behavior obtained using deep reinforcement learning. The selected behavior is a complex task in which a group of simple agents must be directed towards an object to move it to a target position without the use of special gripping mechanisms, using only their own bodies. Our system has been designed to use and combine basic fuzzy behaviors to control obstacle avoidance and the low-level rendezvous processes needed for the foraging task. We use a realistically modeled swarm based on differential robots equipped with light detection and ranging (LiDAR) sensors. It is important to highlight that the obtained macroscopic behavior, in contrast to that of end-to-end systems, combines existing microscopic tasks, which allows us to apply these learning techniques even with the dimensionality and complexity of the problem in a realistic robotic swarm system. The presented behavior is capable of correctly developing the macroscopic foraging task in a robust and scalable way, even in situations that have not been seen in the training phase. An exhaustive analysis of the obtained behavior is carried out, where both the movement of the swarm while performing the task and the swarm scalability are analyzed.This work was supported by the Ministerio de Ciencia, Innovación y Universidades (Spain), project RTI2018-096219-B-I00. Project co-financed with FEDER funds

    A swarm behaviour for jellyfish bloom detection

    Get PDF
    In this paper we will deal with the issue of swarm behaviour for jellyfish detection using UAVs (unmanned aerial vehicles). Swarm behaviour is inspired by the functioning of biological swarms. They are characterized by being fully distributed, scalable and fault-tolerant. Initially, we will study the behaviour of jellyfish and their impact and interaction with industry. Motivated by the need to improve current detection systems, we will propose a swarm behaviour that will be formalized with a microscopic model. We will discuss both the convergence and the scalability of the model. Finally, a macroscopic model will be provided to predict the probability that an individual is placed in a position at a given moment.This work has been carried out by the project “Intelligent Swarm Systems of Unmanned Aerial Vehicles for Security and Surveillance” TIN2013-40982-R, Ministerio de Economía y Competitividad, Spain. Project co-financed with FEDER funds

    A macroscopic model for high intensity radiofrequency signal detection in swarm robotics systems

    Get PDF
    In recent years, there has been a growing interest in resource location in unknown environments for robotic systems, which are composed of multiple simple robots rather than one highly capable robot [M. Sempere, F. Aznar, M. Pujol, and R. Rizo, On cooperative swarm foraging for simple, non explicitly connected, agents, 2010]. This tradeoff reduces the design and hardware complexity of the robots and removes single point failures, but adds complexity in algorithm design. The challenge is to programme a swarm of simple robots, with minimal intercommunication and individual capability, to perform a useful task as a group. This paper is focused on finding the highest intensity area of a radiofrequency (RF) signal in urban environments. These signals are usually more intense near the city centre and its proximity, since in these zones the risk of signal saturation is high. RF radiation (RFR) is boosted or blocked mainly depending on orography or building structures. RF providers need to supply enough coverage, setting up different antennas to be able to provide a minimum quality of service. We will define a micro/macroscopic mathematical model to efficiently study a swarm robotic system, predict their long-term behaviour and gain insight into the system design. The macroscopic model will be obtained from Rate Equations, describing the dynamics of the swarm collective behaviour. In our experimental section, the Campus of the University of Alicante will be used to simulate our model. Three RFR antennas will be taken into account, one inside our Campus and the other two in its perimeter. Several tests, that show the convergence of the swarm towards the RFR, will be presented. In addition, the obtained RFR maps and the macroscopic behaviour of the swarm will be discussed.This work has been supported by the Spanish Ministerio de Ciencia e Innovación, project TIN2009-10581

    Numerical resolution of Emden's equation using Adomian polynomials

    Get PDF
    Purpose: In this paper the authors aim to show the advantages of using the decomposition method introduced by Adomian to solve Emden's equation, a classical non‐linear equation that appears in the study of the thermal behaviour of a spherical cloud and of the gravitational potential of a polytropic fluid at hydrostatic equilibrium. Design/methodology/approach: In their work, the authors first review Emden's equation and its possible solutions using the Frobenius and power series methods; then, Adomian polynomials are introduced. Afterwards, Emden's equation is solved using Adomian's decomposition method and, finally, they conclude with a comparison of the solution given by Adomian's method with the solution obtained by the other methods, for certain cases where the exact solution is known. Findings: Solving Emden's equation for n in the interval [0, 5] is very interesting for several scientific applications, such as astronomy. However, the exact solution is known only for n=0, n=1 and n=5. The experiments show that Adomian's method achieves an approximate solution which overlaps with the exact solution when n=0, and that coincides with the Taylor expansion of the exact solutions for n=1 and n=5. As a result, the authors obtained quite satisfactory results from their proposal. Originality/value: The main classical methods for obtaining approximate solutions of Emden's equation have serious computational drawbacks. The authors make a new, efficient numerical implementation for solving this equation, constructing iteratively the Adomian polynomials, which leads to a solution of Emden's equation that extends the range of variation of parameter n compared to the solutions given by both the Frobenius and the power series methods.This work has been supported by the Ministerio de Ciencia e Innovación, project TIN2009-10581

    Modelling Oil-Spill Detection with Swarm Drones

    Get PDF
    Nowadays, swarm robotics research is having a great increase due to the benefits derived from its use, such as robustness, parallelism, and flexibility. Unlike distributed robotic systems, swarm robotics emphasizes a large number of robots, and promotes scalability. Among the multiple applications of such systems we could find are exploring unstructured environments, resource monitoring, or distributed sensing. Two of these applications, monitoring, and perimeter/area detection of a given resource, have several ecological uses. One of them is the detection and monitoring of pollutants to delimit their perimeter and area accurately. Maritime activity has been increasing gradually in recent years. Many ships carry products such as oil that can adversely affect the environment. Such products can produce high levels of pollution in case of being spilled into sea. In this paper we will present a distributed system which monitors, covers, and surrounds a resource by using a swarm of homogeneous low cost drones. These drones only use their local sensory information and do not require any direct communication between them. Taking into account the properties of this kind of oil spills we will present a microscopic model for a swarm of drones, capable of monitoring these spills properly. Furthermore, we will analyse the proper macroscopic operation of the swarm. The analytical and experimental results presented here show the proper evolution of our system.This work has been supported by the Spanish Ministerio de Ciencia e Innovación, Project TIN2009-10581

    Learning Probabilistic Features for Robotic Navigation Using Laser Sensors

    Get PDF
    SLAM is a popular task used by robots and autonomous vehicles to build a map of an unknown environment and, at the same time, to determine their location within the map. This paper describes a SLAM-based, probabilistic robotic system able to learn the essential features of different parts of its environment. Some previous SLAM implementations had computational complexities ranging from O(Nlog(N)) to O(N2), where N is the number of map features. Unlike these methods, our approach reduces the computational complexity to O(N) by using a model to fuse the information from the sensors after applying the Bayesian paradigm. Once the training process is completed, the robot identifies and locates those areas that potentially match the sections that have been previously learned. After the training, the robot navigates and extracts a three-dimensional map of the environment using a single laser sensor. Thus, it perceives different sections of its world. In addition, in order to make our system able to be used in a low-cost robot, low-complexity algorithms that can be easily implemented on embedded processors or microcontrollers are used.This work has been supported by the Spanish Ministerio de Ciencia e Innovación (www.micinn.es), project TIN2009-10581

    Aprender jugando: ¿qué opinan los alumnos?

    Get PDF
    En este artículo se presentan los resultados de una encuesta realizada al alumnado en la asignatura de Fundamentos de Inteligencia Artificial de la Universidad de Alicante relativa a la elaboración de un campeonato de juegos que se lleva realizando durante tres cursos académicos. La finalidad principal de este trabajo es mostrar si este tipo de eventos realmente motivan al alumnado. Además veremos cómo los perciben los alumnos, qué opinan ellos sobre una futura implantación de una evaluación centrada con experiencias de este tipo y si nosotros como docentes valoramos suficientemente este tipo de eventos en la evaluación final

    Una experiencia metodológica con la autoevaluación como telón de fondo

    Get PDF
    El presente artículo refleja la experiencia de un grupo de profesores en la docencia de la asignatura Modelos de Fabricación Asistida por Computador (MFAC) para las titulaciones de Ingeniería Informática. Como parte fundamental de nuestra experiencia se mostrará el uso de la autoevaluación en la docencia de esta asignatura y los beneficios que consideramos que aporta

    Modelling multi-rotor UAVs swarm deployment using virtual pheromones

    Get PDF
    In this work, a swarm behaviour for multi-rotor Unmanned Aerial Vehicles (UAVs) deployment will be presented. The main contribution of this behaviour is the use of a virtual device for quantitative sematectonic stigmergy providing more adaptable behaviours in complex environments. It is a fault tolerant highly robust behaviour that does not require prior information of the area to be covered, or to assume the existence of any kind of information signals (GPS, mobile communication networks …), taking into account the specific features of UAVs. This behaviour will be oriented towards emergency tasks. Their main goal will be to cover an area of the environment for later creating an ad-hoc communication network, that can be used to establish communications inside this zone. Although there are several papers on robotic deployment it is more difficult to find applications with UAV systems, mainly because of the existence of various problems that must be overcome including limitations in available sensory and on-board processing capabilities and low flight endurance. In addition, those behaviours designed for UAVs often have significant limitations on their ability to be used in real tasks, because they assume specific features, not easily applicable in a general way. Firstly, in this article the characteristics of the simulation environment will be presented. Secondly, a microscopic model for deployment and creation of ad-hoc networks, that implicitly includes stigmergy features, will be shown. Then, the overall swarm behaviour will be modeled, providing a macroscopic model of this behaviour. This model can accurately predict the number of agents needed to cover an area as well as the time required for the deployment process. An experimental analysis through simulation will be carried out in order to verify our models. In this analysis the influence of both the complexity of the environment and the stigmergy system will be discussed, given the data obtained in the simulation. In addition, the macroscopic and microscopic models will be compared verifying the number of predicted individuals for each state regarding the simulation.This work was supported by Ministerio de Economía y Competitividad (Spain) http://www.mineco.gob.es/portal/site/mineco/, project TIN2013-40982-R. Project co-financed with FEDER funds

    Modelling the thermal behaviour of a building facade using deep learning

    Get PDF
    This article aims to model the thermal behaviour of a wall using deep learning techniques. The Fourier theoretical model which is traditionally used to model such enclosures is not capable of considering several factors that affect a prediction that is often incorrect. These results motivate us to try to obtain a better thermal model of the enclosure. For this reason, a connexionist model is provided capable of modelling the behaviour of the enclosure from actual observed temperature data. For the training of this model, several measurements have been obtained over the course of more than one year in a specific enclosure, distributing the readings among the different layers of it. In this work, the predictions of both the theoretical model and the connexionist model have been tested, contrasting them with the measurements obtained previously. It has been observed that the connexionist model substantially improves the theoretical predictions of the Fourier method, thus allowing better approximations to be made regarding the real energy consumption of the building and, in general, the prediction of the energy behaviour of the enclosure
    corecore